45fan.com - 路饭网

搜索: 您的位置主页 > 网络频道 > 阅读资讯:Python的特殊函数大全

Python的特殊函数大全

2015-08-13 14:29:32 来源:www.45fan.com 【

Python的特殊函数大全

以下内容主要针过滤函数filter, 映射和归并函数map/reduce, 装饰器@以及 匿名函数lamda,具体内容如下:

1. 过滤函数filter

定义:filter 函数的功能相当于过滤器。调用一个布尔函数bool_func来迭代遍历每个列表中的元素;返回一个使bool_func返回值为true的元素的序列。

 

复制代码 代码如下:

a=[0,1,2,3,4,5,6,7]
b=filter(None, a)
print b

输出结果:[1, 2, 3, 4, 5, 6, 7]

 

回到顶部
2. 映射和归并函数map/reduce

这里说的map和reduce是Python的内置函数,不是Goggle的MapReduce架构。

2.1 map函数

map函数的格式:map( func, seq1[, seq2...] )

Python函数式编程中的map()函数是将func作用于列表中的每一个元素,并用一个列表给出返回值。如果func为None,作用等同于一个zip()函数。

下图是当列表只有一个的时候,map函数的工作原理图:

Python的特殊函数大全

举个简单的例子:将列表中的元素全部转换为None。

 

复制代码 代码如下:

map(lambda x : None,[1,2,3,4])

 

输出:[None,None,None,None]。

当列表有多个时,map()函数的工作原理图:

Python的特殊函数大全

也就是说每个seq的同一位置的元素在执行过一个多元的func函数之后,得到一个返回值,这些返回值放在一个结果列表中。

下面的例子是求两个列表对应元素的积,可以想象,这是一种可能会经常出现的状况,而如果不是用map的话,就要使用一个for循环,依次对每个位置执行该函数。

 

复制代码 代码如下:

print map( lambda x, y: x * y, [1, 2, 3], [4, 5, 6] ) # [4, 10, 18]

上面是返回值是一个值的情况,实际上也可以是一个元组。下面的代码不止实现了乘法,也实现了加法,并把积与和放在一个元组中。

 

 

复制代码 代码如下:

print map( lambda x, y: ( x * y, x + y), [1, 2, 3], [4, 5, 6] ) # [(4, 5), (10, 7), (18, 9)]

还有就是上面说的func是None的情况,它的目的是将多个列表相同位置的元素归并到一个元组,在现在已经有了专用的函数zip()了。

 

 

复制代码 代码如下:

print map( None, [1, 2, 3], [4, 5, 6] ) # [(1, 4), (2, 5), (3, 6)]
print zip( [1, 2, 3], [4, 5, 6] ) # [(1, 4), (2, 5), (3, 6)]

注意:不同长度的多个seq是无法执行map函数的,会出现类型错误。

 

2.2 reduce函数

reduce函数格式:reduce(func, seq[, init]).

reduce函数即为化简,它是这样一个过程:每次迭代,将上一次的迭代结果(第一次时为init的元素,如没有init则为seq的第一个元素)与下一个元素一同执行一个二元的func函数。在reduce函数中,init是可选的,如果使用,则作为第一次迭代的第一个元素使用。

简单来说,可以用这样一个形象化的式子来说明:

 

复制代码 代码如下:

reduce(func, [1,2,3])=func(func(1,2), 3)

 

reduce函数的工作原理图如下所示:

Python的特殊函数大全

举个例子来说,阶乘是一个常见的数学方法,Python中并没有给出一个阶乘的内建函数,我们可以使用reduce实现一个阶乘的代码。

 

复制代码 代码如下:

n = 5
print reduce(lambda x, y: x * y, range(1, n + 1)) # 120

那么,如果我们希望得到2倍阶乘的值呢?这就可以用到init这个可选参数了。

 

 

复制代码 代码如下:

m = 2
n = 5
print reduce( lambda x, y: x * y, range( 1, n + 1 ), m ) # 240

 

回到顶部
3. 装饰器@

3.1 什么是装饰器(函数)?

定义:装饰器就是一函数,用来包装函数的函数,用来修饰原函数,将其重新赋值给原来的标识符,并永久的丧失原函数的引用。

3.2 装饰器的用法

先举一个简单的装饰器的例子:

 

复制代码 代码如下:

#-*- coding: UTF-8 -*-
import time
def foo():
print 'in foo()'

 

# 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法


复制代码 代码如下:

def timeit(func):

 

# 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装


复制代码 代码如下:

def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start

 

# 将包装后的函数返回


复制代码 代码如下:

return wrapper

foo = timeit(foo)
foo()
 

 

输出:

 

复制代码 代码如下:

in foo()
used: 2.38917518359e-05
 

 

python中专门为装饰器提供了一个@符号的语法糖,用来简化上面的代码,他们的作用一样。上述的代码还可以写成这样(装饰器专有的写法,注意符号“@”):

 

复制代码 代码如下:

#-*- coding: UTF-8 -*-
import time

 

# 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法


复制代码 代码如下:

def timeit(func):

 

# 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装


复制代码 代码如下:

def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start
 

 

# 将包装后的函数返回


复制代码 代码如下:

return wrapper
@timeit
def foo():
print 'in foo()'
#foo = timeit(foo)
foo()

 

其实对装饰器的理解,我们可以根据它的名字来进行,主要有三点:

1)首先装饰器的特点是,它将函数名作为输入(这说明装饰器是一个高阶函数);

2)通过装饰器内部的语法将原来的函数进行加工,然后返回;

3)原函数通过装饰器后被赋予新的功能,新函数覆盖原函数,以后再调用原函数,将会起到新的作用。

说白了,装饰器就相当于是一个函数加工厂,可以将函数进行再加工,赋予其新的功能。

装饰器的嵌套:

#!/usr/bin/python
# -*- coding: utf-8 -*-
def makebold(fn):
 def wrapped():
 return "<b>" + fn() + "</b>"
 return wrapped
def makeitalic(fn):
 def wrapped():
 return "<i>" + fn() + "</i>"
 return wrapped
@makebold
@makeitalic
def hello():
 return "hello world"
print hello()

输出结果:

<b><i>hello world</i></b>
为什么是这个结果呢?
1)首先hello函数经过makeitalic 函数的装饰,变成了这个结果<i>hello world</i>
2)然后再经过makebold函数的装饰,变成了<b><i>hello world</i></b>,这个理解起来很简单。

回到顶部
4. 匿名函数lamda

4.1 什么是匿名函数?

在Python,有两种函数,一种是def定义,一种是lambda函数。

定义:顾名思义,即没有函数名的函数。Lambda表达式是Python中一类特殊的定义函数的形式,使用它可以定义一个匿名函数。与其它语言不同,Python的Lambda表达式的函数体只能有唯一的一条语句,也就是返回值表达式语句。

4.2 匿名函数的用法

lambda的一般形式是关键字lambda,之后是一个或者多个参数,紧跟的是一个冒号,之后是一个表达式:

 

复制代码 代码如下:

lambda argument1 argument2 ... :expression using arguments

lambda是一个表达式,而不是一个语句。

 

lambda主体是一个单一的表达式,而不是一个代码块。

举一个简单的例子,假如要求两个数之和,用普通函数或匿名函数如下:
1)普通函数: def func(x,y):return x+y
2)匿名函数: lambda x,y: x+y

再举一例:对于一个列表,要求只能包含大于3的元素。

1)常规方法:

 

复制代码 代码如下:

L1 = [1,2,3,4,5]
L2 = []
for i in L1:
if i>3:
L2.append(i)

2)函数式编程实现: 运用filter,给其一个判断条件即可

 

 

复制代码 代码如下:

def func(x): return x>3
filter(func,[1,2,3,4,5])

3)运用匿名函数,则更加精简,一行就可以了:

 

 

复制代码 代码如下:

filter(lambda x:x>3,[1,2,3,4,5])

总结: 从中可以看出,lambda一般应用于函数式编程,代码简洁,常和reduce,filter等函数结合使用。此外,在lambda函数中不能有return,其实“:”后面就是返回值。

 

为什么要用匿名函数?

1) 使用Python写一些执行脚本时,使用lambda可以省去定义函数的过程,让代码更加精简。

2) 对于一些抽象的,不会别的地方再复用的函数,有时候给函数起个名字也是个难题,使用lambda不需要考虑命名的问题。

3) 使用lambda在某些时候让代码更容易理解。

以上内容就是针对Python中特殊函数详细介绍,希望对大家有所帮助。


本文地址:http://www.45fan.com/a/question/17636.html
Tags: python 函数 集锦
编辑:路饭网
关于我们 | 联系我们 | 友情链接 | 网站地图 | Sitemap | App | 返回顶部