45fan.com - 路饭网

搜索: 您的位置主页 > 网络频道 > 阅读资讯:Python3 yield生成器的使用方法介绍

Python3 yield生成器的使用方法介绍

2015-09-10 18:54:47 来源:www.45fan.com 【

Python3 yield生成器的使用方法介绍

任何使用yield的函数都称之为生成器,如:

def count(n): 
 while n > 0: 
  yield n #生成值:n 
  n -= 1 

另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成器包含yield语句,更简单点理解生成器就是一个迭代器。

使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调用next()方法返回序列值。

c = count(5) 
c.__next__() #python 3.4.3要使用c.__next__()不能使用c.next()
>>> 5 
c.__next__() 
>>>4 


生成器函数只有在调用__next()__方法的时候才开始执行函数里面的语句,比如:

def count(n): 
 print ( "cunting" )
 while n > 0: 
  yield n #生成值:n 
  n -= 1 

在调用count函数时:c=count(5),并不会打印"counting"只有等到调用c.__next__()时才真正执行里面的语句。每次调用__next__()方法时,count函数会运行到语句yield n处为止,__next__()的返回值就是生成值n,再次调用__next__()方法时,函数继续执行yield之后的语句(熟悉Java的朋友肯定知道Thread.yield()方法,作用是暂停当前线程的运行,让其他线程执行),如:

def count(n): 
 print ("cunting" ) 
 while n > 0: 
  print ('before yield') 
  yield n #生成值:n 
  n -= 1 
  print ('after yield' )

上述代码在第一次调用__next__方法时,并不会打印"after yield"。如果一直调用__next__方法,当执行到没有可迭代的值后,程序就会报错:

Traceback (most recent call last): File "", line 1, in StopIteration
所以一般不会手动的调用__next__方法,而使用for循环:

for i in count(5): 
 print (i), 
 

实例: 用yield生成器模拟Linux中命令:tail -f file | grep python 用于查找监控日志文件中出现有python字样的行。

import time 
def tail(f): 
 f.seek(0,2)#移动到文件EOF 
 while True: 
  line = f.readline() #读取文件中新的文本行 
  if not line: 
   time.sleep(0.1) 
   continue 
  yield line 
 
def grep(lines,searchtext): 
 for line in lines: 
  if searchtext in line: 
   yield line 
 
flog = tail(open('warn.log')) 
pylines = grep(flog,'python') 
for line in pylines: 
 print ( line, ) 
#当此程序运行时,若warn.log文件中末尾有新增一行,且该一行包含python,该行就会被打印出来 
#若打开warn.log时,末尾已经有了一行包含python,该行不会被打印,因为上面是f.seek(0,2)移动到了文件EOF处 
#故,上面程序实现了tail -f warn.log | grep 'python'的功能,动态实时检测warn.log中是否新增现了 
#新的行,且该行包含python 


用yield实现斐波那契数列:

def fibonacci(): 
 a=b=1 
 yield a 
 yield b 
 while True: 
  a,b = b,a+b 
  yield b 

调用:

for num in fibonacci(): 
 if num > 100: 
  break 
 print (num), 

yield中return的作用:
作为生成器,因为每次迭代就会返回一个值,所以不能显示的在生成器函数中return 某个值,包括None值也不行,否则会抛出“SyntaxError”的异常,但是在函数中可以出现单独的return,表示结束该语句。
通过固定长度的缓冲区不断读文件,防止一次性读取出现内存溢出的例子:

def read_file(path): 
 size = 1024 
 with open(path,'r') as f: 
  while True: 
   block = f.read(SIZE) 
   if block: 
    yield block 
   else: 
    return 

如果是在函数中return 具体某个值,就直接抛异常了

>>> def test_return(): 
...  yield 4 
...  return 0 
... 
 File "<stdin>", line 3 
SyntaxError: 'return' with argument inside generator 

例子

下面来看几段代码示例:

例1:

>>> def mygenerator(): 
...  print 'start...' 
...  yield 5 
... 
>>> mygenerator()   //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停 
<generator object mygenerator at 0xb762502c> 
>>> mygenerator().next()  //调用next()即可让函数运行. 
start... 
5 
>>> 

如一个函数中出现多个yield则next()会停止在下一个yield前,见例2:

例2:

>>> def fun2(): 
...  print 'first' 
...  yield 5 
...  print 'second' 
...  yield 23 
...  print 'end...' 
... 
>>> g1 = fun2() 
>>> g1.next()    //第一次运行,暂停在yield 5    
first 
5 
>>> g1.next()    //第二次运行,暂停在yield 23 
second 
23 
>>> g1.next()    //第三次运行,由于之后没有yield,再次next()就会抛出错误 
end... 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
StopIteration 
>>> 

为什么yield 5会输出5,yield 23会输出23?
我们猜测可能是因为yield是表达式,存在返回值.
那么这是否可以认为yield 5的返回值一定是5吗?实际上并不是这样,这个与send函数存在一定的关系,这个函数实质上与next()是相似的,区别是send是传递yield表达式的值进去,而next不能传递特定的值,只能传递None进去,因此可以认为g.next()和g.send(None)是相同的。见例3:

例3:

>>> def fun(): 
...  print 'start...' 
...  m = yield 5 
...  print m 
...  print 'middle...' 
...  d = yield 12 
...  print d 
...  print 'end...' 
... 
>>> m = fun()    //创建一个对象 
>>> m.next()    //会使函数执行到下一个yield前 
start... 
5 
>>> m.send('message')  //利用send()传递值 
message     //send()传递进来的 
middle... 
12 
>>> m.next() 
None      //可见next()返回值为空 
end... 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
StopIteration 


本文地址:http://www.45fan.com/a/question/20657.html
Tags: 详解 Python3 yield
编辑:路饭网
关于我们 | 联系我们 | 友情链接 | 网站地图 | Sitemap | App | 返回顶部