45fan.com - 路饭网

搜索: 您的位置主页 > 网络频道 > 阅读资讯:怎么样计算随意的一天是星期几?

怎么样计算随意的一天是星期几?

2016-05-12 16:02:58 来源:www.45fan.com 【

怎么样计算随意的一天是星期几?

怎样计算任一天是星期几---作者葛勤民
 
摘要:
 
最常见的公式:
 
W=[Y-1]+[(Y-1)/4]-[(Y-1)/100]+[(Y-1)/400]+D
 
Y是年份数,D是这一天在这一年中的累积天数,也就是这一天在这一年中是第几天。
 
最好用的是蔡勒公式:
 
W=[C/4]-2C+y+[y/4]+[13*(M+1)/5]+d-1
 
C是世纪数减一,y是年份后两位,M是月份,d是日数。1月和2月要按上一年的13月和14月来算,这时C和y均按上一年取值。
 
两个公式中的[...]均指只取计算结果的整数部分。算出来的W除以7,余数是几就是星期几。如果余数是0,则为星期日。
 
---------------------------------------------------------------------------
 
星期制度是一种有古老传统的制度。据说因为《圣经·创世纪》中规定上帝用了六天时间创世纪,第七天休息,所以人们也就以七天为一个周期来安排自己的工作和生活,而星期日是休息日。从实际的角度来讲,以七天为一个周期,长短也比较合适。所以尽管中国的传统工作周期是十天(比如王勃《滕王阁序》中说的“十旬休暇”,即是指官员的工作每十日为一个周期,第十日休假),但后来也采取了西方的星期制度。
 
在日常生活中,我们常常遇到要知道某一天是星期几的问题。有时候,我们还想知道历史上某一天是星期几。通常,解决这个方法的有效办法是看日历,但是我们总不会随时随身带着日历,更不可能随时随身带着几千年的万年历。假如是想在计算机编程中计算某一天是星期几,预先把一本万年历存进去就更不现实了。这时候是不是有办法通过什么公式,从年月日推出这一天是星期几呢?
 
答案是肯定的。其实我们也常常在这样做。我们先举一个简单的例子。比如,知道了2004年5月1日是星期六,那么2004年5月31日“世界无烟日”是星期几就不难推算出来。我们可以掰着指头从1日数到31日,同时数星期,最后可以数出5月31日是星期一。其实运用数学计算,可以不用掰指头。我们知道星期是七天一轮回的,所以5月1日是星期六,七天之后的5月8日也是星期六。在日期上,8-1=7,正是7的倍数。同样,5月15日、5月22日和5月29日也是星期六,它们的日期和5月1日的差值分别是14、21和28,也都是7的倍数。那么5月31日呢?31-1=30,虽然不是7的倍数,但是31除以7,余数为2,这就是说,5月31日的星期,是在5月1日的星期之后两天。星期六之后两天正是星期一。
 
这个简单的计算告诉我们计算星期的一个基本思路:首先,先要知道在想算的日子之前的一个确定的日子是星期几,拿这一天做为推算的标准,也就是相当于一个计算的“原点”。其次,知道想算的日子和这个确定的日子之间相差多少天,用7除这个日期的差值,余数就表示想算的日子的星期在确定的日子的星期之后多少天。如果余数是0,就表示这两天的星期相同。显然,如果把这个作为“原点”的日子选为星期日,那么余数正好就等于星期几,这样计算就更方便了。
 
但是直接计算两天之间的天数,还是不免繁琐。比如1982年7月29日和2004年5月1日之间相隔7947天,就不是一下子能算出来的。它包括三段时间:一,1982年7月29日以后这一年的剩余天数;二,1983-2003这二十一个整年的全部天数;三,从2004年元旦到5月1日经过的天数。第二段比较好算,它等于21*365+5=7670天,之所以要加5,是因为这段时间内有5个闰年。第一段和第三段就比较麻烦了,比如第三段,需要把5月之前的四个月的天数累加起来,再加上日期值,即31+29+31+30+1=122天。同理,第一段需要把7月之后的五个月的天数累加起来,再加上7月剩下的天数,一共是155天。所以总共的相隔天数是122+7670+155=7947天。
 
仔细想想,如果把“原点”日子的日期选为12月31日,那么第一段时间也就是一个整年,这样一来,第一段时间和第二段时间就可以合并计算,整年的总数正好相当于两个日子的年份差值减一。如果进一步把“原点”日子选为公元前1年12月31日(或者天文学家所使用的公元0年12月31日),这个整年的总数就正好是想算的日子的年份减一。这样简化之后,就只须计算两段时间:一,这么多整年的总天数;二,想算的日子是这一年的第几天。巧的是,按照公历的年月设置,这样反推回去,公元前1年12月31日正好是星期日,也就是说,这样算出来的总天数除以7的余数正好是星期几。那么现在的问题就只有一个:这么多整年里面有多少闰年。这就需要了解公历的置闰规则了。
 
作者: vc99 2005-1-16 20:55 回复此发言
 
10回复:计算任何一天是星期几的C语言源代码.
 
我们知道,公历的平年是365天,闰年是366天。置闰的方法是能被4整除的年份在2月加一天,但能被100整除的不闰,能被400整除的又闰。因此,像1600、2000、2400年都是闰年,而1700、1800、1900、2100年都是平年。公元前1年,按公历也是闰年。
 
因此,对于从公元前1年(或公元0年)12月31日到某一日子的年份Y之间的所有整年中的闰年数,就等于
 
[(Y-1)/4]-[(Y-1)/100]+[(Y-1)/400],
 
[...]表示只取整数部分。第一项表示需要加上被4整除的年份数,第二项表示需要去掉被100整除的年份数,第三项表示需要再加上被400整除的年份数。之所以Y要减一,这样,我们就得到了第一个计算某一天是星期几的公式:
 
W=(Y-1)*365+[(Y-1)/4]-[(Y-1)/100]+[(Y-1)/400]+D.(1)
 
其中D是这个日子在这一年中的累积天数。算出来的W就是公元前1年(或公元0年)12月31日到这一天之间的间隔日数。把W用7除,余数是几,这一天就是星期几。比如我们来算2004年5月1日:
 
W=(2004-1)*365+[(2004-1)/4]-[(2004-1)/100]+[(2004-1)/400]+31+29+31+30+1)
 
=731702,
 
731702/7=104528……6,余数为六,说明这一天是星期六。这和事实是符合的。
 
上面的公式(1)虽然很准确,但是计算出来的数字太大了,使用起来很不方便。仔细想想,其实这个间隔天数W的用处仅仅是为了得到它除以7之后的余数。这启发我们是不是可以简化这个W值,只要找一个和它余数相同的较小的数来代替,用数论上的术语来说,就是找一个和它同余的较小的正整数,照样可以计算出准确的星期数。
 
显然,W这么大的原因是因为公式中的第一项(Y-1)*365太大了。其实,
 
(Y-1)*365=(Y-1)*(364+1)
 
=(Y-1)*(7*52+1)
 
=52*(Y-1)*7+(Y-1),
 
这个结果的第一项是一个7的倍数,除以7余数为0,因此(Y-1)*365除以7的余数其实就等于Y-1除以7的余数。这个关系可以表示为:
 
(Y-1)*365≡Y-1(mod7).
 
其中,≡是数论中表示同余的符号,mod7的意思是指在用7作模数(也就是除数)的情况下≡号两边的数是同余的。因此,完全可以用(Y-1)代替(Y-1)*365,这样我们就得到了那个著名的、也是最常见到的计算星期几的公式:
 
W=(Y-1)+[(Y-1)/4]-[(Y-1)/100]+[(Y-1)/400]+D.(2)
 
这个公式虽然好用多了,但还不是最好用的公式,因为累积天数D的计算也比较麻烦。是不是可以用月份数和日期直接计算呢?答案也是肯定的。我们不妨来观察一下各个月的日数,列表如下:
 
月份:1月2月3月4月5月6月7月8月9月10月11月12月
 
--------------------------------------------------------------------------
 
天数:3128(29)31303130313130313031
 
如果把这个天数都减去28(=4*7),不影响W除以7的余数值。这样我们就得到另一张表:
 
月份:1月2月3月4月5月6月7月8月9月10月11月12月
 
------------------------------------------------------------------------
 
剩余天数:30(1)3232332323
 
平年累积:33681113161921242629
 
闰年累积:34791214172022252730
 
仔细观察的话,我们会发现除去1月和2月,3月到7月这五个月的剩余天数值是3,2,3,2,3;8月到12月这五个月的天数值也是3,2,3,2,3,正好是一个重复。相应的累积天数中,后一月的累积天数和前一月的累积天数之差减去28就是这个重复。正是因为这种规律的存在,平年和闰年的累积天数可以用数学公式很方便地表达:
 
╭d;(当M=1)
 
D={31+d;(当M=2)(3)
 
╰[13*(M+1)/5]-7+(M-1)*28+d+i.(当M≥3)
 
其中[...]仍表示只取整数部分;M和d分别是想算的日子的月份和日数;平年i=0,闰年=1。对于M≥3的表达式需要说明一下:[13*(M+1)/5]-7算出来的就是上面第二个表中的平年累积值,再加上(M-1)*28就是想算的日子的月份之前的所有月份的总天数。这是一个很巧妙的办法,利用取整运算来实现3,2,3,2,3的循环。比如,对2004年5月1日,有:
 
作者: vc99 2005-1-16 20:55 回复此发言
 
11回复:计算任何一天是星期几的C语言源代码.
 
D=[13*(5+1)/5]-7+(5-1)*28+1+1
 
=122,
 
这正是5月1日在2004年的累积天数。
 
假如,我们再变通一下,把1月和2月当成是上一年的“13月”和“14月”,不仅仍然符合这个公式,而且因为这样一来,闰日成了上一“年”(一共有14个月)的最后一天,成了d的一部分,于是平闰年的影响也去掉了,公式就简化成:
 
D=[13*(M+1)/5]-7+(M-1)*28+d.(3≤M≤14)(4)
 
上面计算星期几的公式,也就可以进一步简化成:
 
W=(Y-1)+[(Y-1)/4]-[(Y-1)/100]+[(Y-1)/400]+[13*(M+1)/5]-7+(M-1)*28+d.
 
因为其中的-7和(M-1)*28两项都可以被7整除,所以去掉这两项,W除以7的余数不变,公式变成:
 
W=(Y-1)+[(Y-1)/4]-[(Y-1)/100]+[(Y-1)/400]+[13*(M+1)/5]+d.
 
(5)
 
当然,要注意1月和2月已经被当成了上一年的13月和14月,因此在计算1月和2月的日子的星期时,除了M要按13或14算,年份Y也要减一。比如,2004年1月1日是星期四,用这个公式来算,有:
 
W=(2003-1)+[(2003-1)/4]-[(2003-1)/100]+[(2003-1)/400]+[13*(13+1)/5]+1
 
=2002+500-20+5+36+1
 
=2524;
 
2524/7=360……4.这和实际是一致的。
 
公式(5)已经是从年、月、日来算星期几的公式了,但它还不是最简练的,对于年份的处理还有改进的方法。我们先来用这个公式算出每个世纪第一年3月1日的星期,列表如下:
 
年份:1(401,801,…,2001)101(501,901,…,2101)
 
--------------------------------------------------------------------
 
星期:42
 
====================================================================
 
年份:201(601,1001,…,2201)301(701,1101,…,2301)
 
--------------------------------------------------------------------
 
星期:05
 
可以看出,每隔四个世纪,这个星期就重复一次。假如我们把301(701,1101,…,2301)年3月1日的星期数看成是-2(按数论中对余数的定义,-2和5除以7的余数相同,所以可以做这样的变换),那么这个重复序列正好就是一个4,2,0,-2的等差数列。据此,我们可以得到下面的计算每个世纪第一年3月1日的星期的公式:
 
W=(4-Cmod4)*2-4.(6)
 
式中,C是该世纪的世纪数减一,mod表示取模运算,即求余数。比如,对于2001年3月1日,C=20,则:
 
W=(4-20mod4)*2-4
 
=8-4
 
=4.
 
把公式(6)代入公式(5),经过变换,可得:
 
(Y-1)+[(Y-1)/4]-[(Y-1)/100]+[(Y-1)/400]≡(4-Cmod4)*2-1(mod7).(7)
 
因此,公式(5)中的(Y-1)+[(Y-1)/4]-[(Y-1)/100]+[(Y-1)/400]这四项,在计算每个世纪第一年的日期的星期时,可以用(4-Cmod4)*2-1来代替。这个公式写出来就是:
 
W=(4-Cmod4)*2-1+[13*(M+1)/5]+d.(8)
 
有了计算每个世纪第一年的日期星期的公式,计算这个世纪其他各年的日期星期的公式就很容易得到了。因为在一个世纪里,末尾为00的年份是最后一年,因此就用不着再考虑“一百年不闰,四百年又闰”的规则,只须考虑“四年一闰”的规则。仿照由公式(1)简化为公式(2)的方法,我们很容易就可以从式(8)得到一个比公式(5)更简单的计算任意一天是星期几的公式:
 
W=(4-Cmod4)*2-1+(y-1)+[y/4]+[13*(M+1)/5]+d.(9)
 
式中,y是年份的后两位数字。
 
如果再考虑到取模运算不是四则运算,我们还可以把(4-Cmod4)*2进一步改写成只含四则运算的表达式。因为世纪数减一C除以4的商数q和余数r之间有如下关系:
 
4q+r=C,
 
其中r即是Cmod4,因此,有:
 
r=C-4q
 
=C-4*[C/4].(10)
 
 
(4-Cmod4)*2=(4-C+4*[C/4])*2
 
=8-2C+8*[C/4]
 
≡[C/4]-2C+1(mod7).(11)
 
把式(11)代入(9),得到:
 
W=[C/4]-2C+y+[y/4]+[13*(M+1)/5]+d-1.(12)
 
这个公式由世纪数减一、年份末两位、月份和日数即可算出W,再除以7,得到的余数是几就表示这一天是星期几,唯一需要变通的是要把1月和2月当成上一年的13月和14月,C和y都按上一年的年份取值。因此,人们普遍认为这是计算任意一天是星期几的最好的公式。这个公式最早是由德国数学家克里斯蒂安·蔡勒(ChristianZeller,1822-1899)在1886年推导出的,因此通称为蔡勒公式(Zeller’sFormula)。为方便口算,式中的[13*(M+1)/5]也往往写成[26*(M+1)/10]。
 
现在仍然让我们来算2004年5月1日的星期,显然C=20,y=4,M=5,d=1,代入蔡勒公式,有:
 
W=[20/4]-40+4+1+[13*(5+1)/5]+1-1
 
=-15.
 
注意负数不能按习惯的余数的概念求余数,只能按数论中的余数的定义求余。为了方便计算,我们可以给它加上一个7的整数倍,使它变为一个正数,比如加上70,得到55。再除以7,余6,说明这一天是星期六。这和实际是一致的,也和公式(2)计算所得的结果一致。
 
最后需要说明的是,上面的公式都是基于公历(格里高利历)的置闰规则来考虑的。对于儒略历,蔡勒也推出了相应的公式是:
 
W=5-C+y+[y/4]+[13*(M+1)/5]+d-1.(13)
 
这样,我们终于一劳永逸地解决了不查日历计算任何一天是星期几的问题。
 

本文地址:http://www.45fan.com/a/question/49356.html
Tags: 计算 星期 一天
编辑:路饭网
关于我们 | 联系我们 | 友情链接 | 网站地图 | Sitemap | App | 返回顶部