局部异常因子算法-Local Outlier Factor(LOF)
在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据。异常检测也是数据挖掘的一个方向,用于反作弊、伪基站、金融诈骗等领域。
异常检测方法,针对不同的数据形式,有不同的实现方法。常用的有基于分布的方法,在上、下α分位点之外的值认为是异常值(例如图1),对于属性值常用此类方法。基于距离的方法,适用于二维或高维坐标体系内异常点的判别,例如二维平面坐标或经纬度空间坐标下异常点识别,可用此类方法。
这次要介绍一下一种基于距离的异常检测算法,局部异常因子LOF算法(Local Outlier Factor)。
用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。
下面介绍LOF算法的相关定义:
1)
2) k-distance:第k距离
对于点p的第k距离
a) 在集合中至少有不包括p在内的
b) 在集合中最多有不包括p在内的
p的第k距离,也就是距离p第k远的点的距离,不包括p,如图3。
3) k-distance neighborhood of p:第k距离邻域
点p的第k距离邻域
因此p的第k邻域点的个数
4) reach-distance:可达距离
点o到点p的第k可达距离定义为:
也就是,点o到点p的第k可达距离,至少是o的第k距离,或者为o、p间的真实距离。
这也意味着,离点o最近的k个点,o到它们的可达距离被认为相等,且都等于
如图4,
5) local reachability density:局部可达密度
点p的局部可达密度表示为:
表示点p的第k邻域内点到p的平均可达距离的倒数。
注意,是p的邻域点
这个值的含义可以这样理解,首先这代表一个密度,密度越高,我们认为越可能属于同一簇,密度越低,越可能是离群点。如果p和周围邻域点是同一簇,那么可达距离越可能为较小的
6) local outlier factor:局部离群因子
点p的局部离群因子表示为:
本文地址:http://www.45fan.com/a/question/99897.html