所谓普通索引,就是在创建索引时,不附加任何限制条件(唯一、非空等限制)。该类型的索引可以创建在任何数据类型的字段上。
所谓唯一索引,就是在创建索引时,限制索引的值必须是唯一的。通过该类型的索引可以更快速地查询某条记录。
普通索引还是唯一索引?
假设你在维护一个市民系统,每个人都有一个唯一的身份证号,而且业务代码已经保证了不会写入两个重复的身份证号。如果市民系统需要按照身份证号查姓名,就会执行类似这样的SQL语句:
select name from CUser where id_card='xxxxxxxyyyyyyzzzzz';
所以你一定会考虑在id_card字段上建索引。由于身份证号字段比较大,这里不建议将身份证号当做主键,现在有两个选择,要么给id_card字段创建唯一索引,要么创建一个普通索引。如果业务代码已经保证了不会写入重复的身份证号,那么这两个选择逻辑上都是正确的。
现在需要思考的是,从性能的角度考虑,我们应该选择唯一索引还是普通索引?选择的依据又是什么呢?我们以<深入浅出索引(上)>中的例子来说明,假设字段k上的值都不重复。
接下来,我们就从这两种索引对查询语句和更新语句的性能影响来进行分析。
查询过程
假设,执行的查询语句是select id from T where k=5。这个查询语句在索引树上查找的过程,先是通过B+树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。
- 对于普通索引来说,查找到满足条件的第一个记录(5, 500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
- 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。
那么,这个不同带来的性能差距会有多少呢?答案是,微乎其微。
我们都知道,InnoDB的数据是按数据页为单位来读写的。也就是说,当需要读一条记录的时候,并不是将这个记录本身从磁盘读出来,而是以页为单位,将其整体读入内存。在InnoDB中,每个数据页的大小默认是16KB。
因为引擎是按页读写的,所以说,当找到k=5的记录的时候,它所在的数据页就都在内存里了。那么,对于普通索引来说,要多做的那一次“查找和判断下一条记录”的操作,就只需要一次指针寻找和一次计算。
当然,如果k=5这个记录刚好是这个数据页的最后一个记录,那么要取下一个记录,必须读取下一个数据页,这个操作会稍微复杂一些。但是我们之前计算过,对于整型字段,一个数据页可以放近千个key,因此出现这种情况的概率会很低。所以,我们计算平均性能差异时,仍然可以认为这个操作成本对于现在的CPU来说可以忽略不计。
更新过程
为了说明普通索引和唯一索引对更新语句性能的影响这个问题,需要先了解一下change buffer的概念:
当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InnoDB会将这些更新操作缓存在change buffer中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。
需要说明的是,虽然名字叫作change buffer,实际上它是可以持久化的数据。也就是说,change buffer在内存中有拷贝,也会被写入到磁盘上。将change buffer中的操作应用到原数据页,得到最新结果的过程称为merge。除了访问这个数据页会触发merge外,系统有后台线程会定期merge。在数据库正常关闭(shutdown)的过程中,也会执行merge操作。
显然,如果能够将更新操作先记录在change buffer,减少读磁盘,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用buffer pool的,所以这种方式还能够避免占用内存,提高内存利用率。
那么,什么条件下可以使用change buffer呢?
对于唯一索引来说,所有的更新操作都要先判断这个操作是否违反唯一性约束。比如,要插入(4, 400)这个记录,就要先判断现在表中是否已经存在k=4的记录,而这必须要将数据页读入内存才能判断。如果都已经读入到内存了,那直接更新内存会更快,就没必要使用change buffer了。因此,唯一索引的更新就不能使用change buffer,实际上也只有普通索引可以使用。
change buffer用的是buffer pool里的内存,因此不能无限增大。change buffer的大小,可以通过参数innodb_change_buffer_max_size来动态设置。这个参数设置为50的时候,表示change buffer的大小最多只能占用buffer pool的50%。
现在,我们已经理解了change buffer的机制,我们再回过头来分析这个问题,如果要在这张表中插入一个新记录(4, 400)的话,InnoDB的处理流程是怎样的。
第一种情况是,这个记录要更新的目标页在内存中。这时,InnoDB的处理流程如下:
- 对于唯一索引来说,找到3和5之间的位置,判断到没有冲突,插入这个值,语句执行结束。
- 对于普通索引来说,找到3和5之间的位置,插入这个值,语句执行结束。
这样看来,普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的CPU时间。但是,这不是我们关注的重点。
第二种情况是,这个记录要更新的目标页不在内存中。这时,InnoDB的处理流程如下:
- 对于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束。
- 对于普通索引来说,则是将更新记录在change buffer,语句执行就结束了。
将数据从磁盘读入内存涉及随机IO的访问,是数据库里面成本最高的操作之一。change buffer因为减少了随机磁盘访问,所以对更新性能的提升会很明显。现实中就发生过这样的事情,有个DBA的同学说,他负责的某个业务的库内存命中率突然从99%降低到75%,整个系统处于阻塞状态,更新语句全部堵祝而探究其原因后,才发现这个业务有大量插入数据的操作,而他在前一天把其中的某个普通索引改成了唯一索引。
change buffer的使用场景
通过以上分析,我们了解了使用change buffer对更新过程的加速作用,也清楚了change buffer只限于用在普通索引的场景下,而不适用于唯一索引。那么,现在有一个问题就是:普通索引的所有场景,使用change buffer都可以起到加速作用吗?
因为merge的时候是真正进行数据更新的时刻,而change buffer的主要目的就是将记录的变更动作缓存下来,所以在一个数据页做merge之前,change buffer记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。
因此,对于写多读少的业务来说,页面在写完以后马上被访问的概率比较小,此时change buffer的使用效果最好。这种业务模型常见的就是账单类、日志类系统。
反过来,假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在change buffer,但之后由于马上要访问这个数据页,会立即触发merge过程。这样随机访问IO的次数不会减少,反而增加了change buffer的维护代价。所以,对于这种业务模式来说,change buffer反而起到了副作用。
索引选择和实战
回到一开始的问题,普通索引和唯一索引应该怎么选择。其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,这里建议尽量选择普通索引。如果所有的更新后,都马上伴随着对这个记录的查询,那么应该关闭change buffer。而在其他情况下,change buffer都能提升更新性能。
在实际应用中,你会发现,普通索引和change buffer的配合使用,对于数据量大的表的更新优化还是很明显的。特别的,在使用机械硬盘的时候,change buffer这个机制的收效是非常显著的。所以,当你有一个类似“历史数据”的库,并且出于成本考虑用的是机械硬盘时,那你应该特别关注这些表里的索引,尽量使用普通索引,然后把change buffer尽量开大,以确保这个“历史数据”表的数据写入速度。
change buffer和redo log
理解了change buffer的原理,我们很容易联想到之前学习的redo log和WAL。我们知道,WAL提升性能的核心机制,也的确是尽量减少随机读写,这两个概念确实容易混淆。所以,这里把它们放到了同一个流程里来说明,便于我们区分这两个概念。
现在,我们要在表上执行这个插入语句:
insert into t(id,k) values(id1,k1),(id2,k2);
这里,我们假设当前k索引树的状态,查找到位置后,k1所在的数据页在内存(InnoDB buffer pool)中,k2所在的数据页不在内存中。如图所示是带change buffer的更新状态图。
分析这条更新语句,你会发现它涉及了四个部分:内存、redo log(ib_log_fileX)、数据表空间(t.ibd)、系统表空间(ibdata1)。
这条更新语句做了如下的操作(按照图中的数字顺序):
- Page1在内存中,直接更新内存;
- Page2没有在内存中,就在内存的change buffer区域,记录下"我要往Page2插入一行"这个信息。
- 将上述两个动作记入redo log中(图中3和4)。
做完上面这些,事务就可以完成了。所以,你会看到,执行这条更新语句的成本很低,就是写了两处内存,然后写了一次磁盘(两次操作合在一起写了一次磁盘),而且还是顺序写的。同时,图中的两个虚线箭头,是后台操作,不影响更新的响应时间。那在这之后的读请求,要怎么处理呢?
比如,我们现在要执行select * from t where k in (k1, k2)。这里,给出了这两个请求的流程图:
从图中可以看到:
- 读Page1的时候,直接从内存返回。这也说明了,WAL之后如果读数据,不一定要读磁盘,也不一定要从redo log里面把数据更新以后才可以返回,图中的状态就反应了,虽然磁盘上还是之前的数据,但是这里直接从内存返回结果,结果是正确的。
- 要读Page2的时候,需要把Page2从磁盘读入内存中,然后应用change buffer里面的操作日志,生成一个正确的版本并返回结果。
可以看到,直到需要读Page2的时候,这个数据页才会被读入内存。所以,如果要简单的对比这两个机制在提升更新性能上的收益的话,redo log主要节省的是随机写磁盘的IO消耗(转成顺序写),而change buffer主要节省的则是随机读磁盘的IO消耗。
总结
这次,我们从普通索引和唯一索引的选择开始,了解了数据的查询和更新过程,然后说明了change buffer的机制以及应用场景,最好讲到了索引选择的实践。由于唯一索引用不上change buffer的优化机制,因此如果业务可以接收,从性能角度出发还是建议优先考虑非唯一索引。
最后补充:
- 首先,业务正确性优先,我们一开始的前提就是"业务代码已经保证不会写入重复数据"的情况下,讨论性能问题。如果业务不能保证,或者业务就是要求数据库来做约定,那么没得选,必须创建唯一索引。这种情况下,本篇文章的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,可以给你多提供一个排查的思路。
- 然后,在一些"归档库"的场景,你是可以考虑使用普通索引的。比如,线上数据只需要保留半年,然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率,可以考虑把表里面的唯一索引改成普通索引。
思考:通过change buffer更新过程图可以看到,change buffer一开始是写内存的,那么如果这个时候机器掉电重启,会不会导致change buffer丢失呢?change buffer丢失可不是小事儿,再从磁盘读入数据可就没有了merge过程,就等于是数据丢失了。会不会出现这种情况呢?
答案:不会丢失。虽然只是更新内存,但是在事务提交的时候,我们把change buffer的操作也记录到了redo log里了,所以崩溃恢复的时候,change buffer也能找回来。
下面给出merge的执行流程:
- 从磁盘读入数据页到内存(老版本的数据页)。
- 从change buffer里找出这个数据页的change buffer记录(可能有多个),依次应用,得到新版数据页。
- 写redo log。这个redo log包含了数据的变更和change buffer的变更。
到这里merge过程就结束了。这时候,数据页和内存中change buffer对应的磁盘位置都还没有修改,属于脏页,之后各自刷回自己的物理数据,就是另外一个过程了。
本文地址:http://www.45fan.com/dnjc/100347.html